1. Summary

This section is intended for the general audience.

The Prime Crawler (or PC) is a pseudo-random number generator. It generates an infinite string consisting of zeroes and ones. The internal state of the generator may be represented by what we call a pad, which may be depicted as follows:

\[
\begin{align*}
\text{State} & \quad \text{Output} \\
001 & \\
01100 & 1 \\
1001100 & \\
\end{align*}
\]

The pad consists of several so-called lines, which are fixed finite binary sequences (later treated as infinite periodic sequences). Notice that one number in each line is underlined, indicating the current position in that line. To generate a pseudo-random digit, PC counts the number of ones at underlined positions. If the number of ones is even, it generates 0, and if the number of ones is odd, it generates 1. In the state depicted above, it will generate 1. Readers familiar with the basic programming will recognize this as an XORing of the underlined digits. After generating a digit, PC shifts underlined positions to the right. If the end of a line is reached, it shifts the underlined position to the beginning of that line. Here are a few consecutive steps for the depicted pad:

\[
\begin{align*}
\text{State} & \quad \text{Output} \\
001 & \\
01100 & 1 \\
1001100 & \\
\end{align*}
\]

So the sequence generated by the depicted pad starts with 1101 and continues (potentially) forever. To exclude truly trivial cases, we demand that each line must contain at least one 0 and at least one 1. Additionally, we require that the line lengths
are pairwise distinct, relatively prime numbers. In the example given, the lengths are 3, 5, 7. It comes out that just on these premises, the period of the generated sequence is the product of line lengths (in this specific case, the period is $3 \cdot 5 \cdot 7 = 105$), the period being the shortest repeating substring. For any PC, the sequence starts repeating itself as soon as the position markers find themselves in the initial state 1.

While using a pad (rather than a formula) in order to generate a pseudo-random sequence may seem inelegant, one has to recognize that even very small pads will result in very large periods. For example, for a pad on the first 100 primes, the period has 220 decimal places. It is easy to see that if n is the number of lines, the period grows faster than a^n, and from the Prime Number Theorem one can see that it grows faster than $n!$.

A large period is, of course, irrelevant if the resulting sequence lacks “randomness” or “variability”. It would be very fortunate if we could show that for some integer k, all possible binary strings of length k are approximately equidistributed, i.e. each of the 2^k different strings occurs about the same number of times within one period of the pseudo-random sequence. It would be even better if we could show that k could be made arbitrarily large by increasing n, the number of lines in the pad, and that we can get to high enough values of k without slowing down the computation too much or running out of the computer memory.

Another nice property we want to secure is being unpredictable. Ideally, one should not be able to predict the next digit with accuracy above 0.5, no matter how many outputs in a row one observes.

As it stands, we can show that binary digits are approximately equidistributed, and we have a good intuition about other very short strings. With a slight modification to the algorithm, we should be able to say the same about strings of length comparable to that of the longest line in a pad.

2. Notation

$\mathbb{N} = \{0, 1, 2, \ldots\}$.

Unless otherwise stated, sequences are indexed by \mathbb{N}.

A string is a finite sequence. A substring of a sequence is an improper subsequence which is also an interval with respect to the order topology. A character is synonymous with a member of a sequence.

3. Prime Crawler

A pad consists of n lines L_i, each line a binary sequence with the period p_i, $i = 0, 1, 2, \ldots, n - 1$, with $p_i \neq 1$ pairwise distinct and relatively prime. Define $L_i(j)$ to be the j-th character in L_i, where $i = 0, 1, \ldots, n - 1$ and $j \in \mathbb{N} = \{0, 1, 2, \ldots\}$. To generate a pseudo-random binary sequence $\langle r_j \rangle$, let

$$r_j = \bigoplus_{i=0}^{n-1} L_i(j),$$

where \oplus is xor, or the exclusive or, i.e. $a \oplus b = 0$ if $a = b$, $a \oplus b = 1$ otherwise.

3.1. Period. A constant line is not interesting, as a line of zeroes has no effect on r_j, a line of ones flips each r_j. We will assume that no line is constant (actually, it was
already implicit in how we wanted periods to be different from 1). On that assumption, the period of \((r_j)\), given some pad, is guaranteed to be

\[
\prod_{i=0}^{n-1} p_i,
\]

as will be shown shortly. In general, any such sequence \((r_j)\) with period \((3)\) will be called the pad product of lines \(L_i\), \(i = 0, 1, \ldots, n-1\) and will be written simply as a product \(L_0L_1\ldots L_{n-1}\). It should be clear that the pad product is commutative and associative, as is \(\emptyset\).

The period is clearly bounded from above by \((3)\); does it have to be that large? Yes. Fix \(L_0, L_1\) with periods \(p_0, p_1\) respectively. It will suffice to show that the period of \(L_0L_1\) is \(p_0p_1\) for \(p_0\) and \(p_1\) relatively prime and the induction will take care of the rest. Consider the initial segment of \(L_0\) which is a concatenation of \(p_0\) strings, each of length \(p_1\). These strings cannot all be the same, as it would force \(L_0\) to be constant. Hence the initial segment of \(L_0L_1\) of length \(p_0p_1\) cannot be a concatenation of \(p_0\) identical strings. Similarly, the same initial segment cannot be a concatenation of \(p_1\) identical strings. This establishes \((3)\).

3.2. Distribution of Digits

We will say that the proportion of zeroes in a line is the proportion of zeroes in a periodic substring in that line.

Let \(a_0, a_1, \ldots\) be proportions of zeroes in the respective lines. On our assumptions, \(a_i \neq 0\) or 1. Also, \(a_i = 1/2\) makes digits perfectly equidistributed in any pad product involving the respective line, so we will omit this case as trivial.

Let \(b_i = a_i - 1/2\), so that \(b_i \in (-1/2, 1/2)\), \(b_i \neq 0\). Let \(c_i\) be the proportion of zeroes in the pad product of lines \(L_0, \ldots, L_i\). Let \(d_i = c_i - 1/2\). In particular, \(c_0 = a_0\) and \(d_0 = b_0\).

In general, given two lines with proportions of zeroes \(a_0\) and \(a_1\), the proportion of zeroes in their pad product is

\[
a_0a_1 + (1 - a_0)(1 - a_1) = 2a_0a_1 + 1 - a_0 - a_1.
\]

In our case, the \(i\)-th pad product can be obtained from the \((i - 1)\)-st pad product and the \(i\)-th line, so for \(i > 0\) we have

\[
c_i = 2c_{i-1}a_i + 1 - c_{i-1} - a_i,
\]

\[
d_i + 1/2 = 2(d_{i-1} + 1/2)(b_i + 1/2) + 1 - (d_{i-1} + 1/2) - (b_i + 1/2)
\]

\[
d_i = 2d_{i-1}b_i = 2^i \prod_{j=0}^{i} b_j.
\]

Since \(b_i \in (-1/2, 1/2)\) for all \(i \in \mathbb{N}\), \(|d_i|\) is strictly decreasing for every pad. Note that \(d_i \neq 0\) for all \(i \in \mathbb{N}\).

3.2.1. Worst Case Scenario

If digits are to be approximately equidistributed, \(c_i\) has to approach 1/2 and \(d_i\) has to approach 0. The “worst case” clearly happens when each \(|b_i|\) is as large as possible, i.e. when each line contains but one 0 or but one 1. The maximum period length among first \(i\) lines of the pad grows at least as fast as primes, and possibly faster. It is easy to come up with an example where period lengths grow
too fast for \(d_i\) to converge to zero, so let us suppose that period lengths are primes above 2\(^1\).

If we agree to write \(\rho_i\) for \(i\)-th prime, then the worst case could be conceived as

\[
b_i = \frac{1}{2} - \frac{1}{\rho_{i+2}},
\]

and we need to inspect what happens to \(d_i\) as \(i \to \infty\). (We wrote \(\rho_{i+2}\) because \(i\) counts from zero while the first prime useful to us is \(\rho_2 = 3\).) Well, in agreement with (6), \(d_i\) converges to zero as \(i \to \infty\) iff the following product converges to zero:

\[
\prod_{i=1}^{\infty} 2 \left(\frac{1}{2} - \frac{1}{\rho_{i+1}} \right) = \prod_{i=1}^{\infty} \left(1 - \frac{2}{\rho_{i+1}} \right).
\]

What we have in (7) is the multiplicative inverse of

\[
\prod_{i=1}^{\infty} \frac{1}{1 - 2\rho_{i+1}^{-1}},
\]

with the latter diverging to infinity just in case if the former approaches zero. Which it does, and we prove it by showing that a slower-growing product diverges:

\[
\prod_{i=1}^{\infty} \frac{1}{1 - \rho_i^{-1}} = \left(1 + \frac{1}{2} + \frac{1}{2^2} + \ldots \right) \left(1 + \frac{1}{3} + \frac{1}{3^2} + \ldots \right) \left(1 + \frac{1}{5} + \frac{1}{5^2} + \ldots \right) \ldots
\]

\[
= 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \ldots
\]

\[
= \infty.
\]

We may conclude that in the case when line periods grow as slow as primes, the proportion of zeroes in a pad product approaches 0.5 as the number of lines tends to \(\infty\).

3.2.2. A More Reasonable Case. Suppose that we have a somewhat more “typical” pad, one in which the proportion of zeroes in each line is at least 1/4, and hence \(b_i \leq 1/4\). This assumption is true of most lines in most pads. Then

\[
|d_i| = \left| 2 \prod_{j=0}^{i} b_j \right| \leq 2^i \prod_{j=0}^{i} \frac{1}{4} = \frac{1}{2^{i+2}},
\]

i.e. in a “typical” pad, where zeroes and ones are approximately equidistributed, the proportion of zeroes in the pad product approaches \(\frac{1}{2}\) very fast. In practice, one can easily compute an upper bound on \(|d_i|\) in a given pad by counting lines with proportion of zeroes at least 1/4.

\(^1\) Which is the best case scenario with respect to the period growth, but it is also the most practical one if we actually want to have as many lines as possible, given a fixed amount of computer memory.
3.3. Distribution Of Strings. We start by introducing an auxiliary concept of a blurring random process and proving things about it. We conclude by proving the main theorem in this section, which characterizes distribution of strings of a given length in the period of our number generator.

3.3.1. Blurring Walks. We will define a special kind of a random walk on a set of two elements: at time \(i \in \mathbb{N}^+ \), the traveler will either go to the other element in the set or will remain where it is. Specifically, let \(T_0, T_1, T_2, T_3, \ldots \) be a sequence of random variables with values among \(X = \{0, 1\} \) and let \(T_{i+1} = 1 - T_i \) with probability \(p_i \) and \(T_{i+1} = T_i \) with probability \(1 - p_i \). Let \(T_0 = 0 \). Of primary interest to us is the distribution of \(T_i \) as \(i \to \infty \). We can write the distribution of \(T_0 \) as a row vector
\[
D_0 = (1, 0),
\]
indicating that \(P(T_0 = 0) = 1 \) and \(P(T_0 = 1) = 0 \), and then compute \(D_i \) by recursion:
\[
D_i = D_{i-1} \left(\begin{array}{cc} 1 - p_i & p_i \\ p_i & 1 - p_i \end{array} \right).
\]

Definition 3.3.2. Let the process \(T_0, T_1, T_2, \ldots \) as defined above be called a blurring process and the corresponding sequence \(p_1, p_2, p_3, \ldots \) a blurring sequence iff
\[
\lim_{i \to \infty} D_i = (1/2, 1/2).
\]

Of course, not every sequence is a blurring sequence: for example, \(p_i \equiv 0 \) will result in \(\lim_{i \to \infty} D_i = (1, 0) \). In general, however, non-trivial values \(p_i \) will drag the distribution in the right direction, but not always fast enough. To show what we mean, write
\[
D_i = D_0 \left(\begin{array}{cc} 1 - q_i & q_i \\ q_i & 1 - q_i \end{array} \right) = D_0 \prod_{k=1}^{i} \left(\begin{array}{cc} 1 - p_k & p_k \\ p_k & 1 - p_k \end{array} \right).
\]
Here we can see that \(q_1 = p_1 \) and furthermore, to obtain the next \(q \) we calculate
\[
\left(\begin{array}{cc} 1 - q_i & q_i \\ q_i & 1 - q_i \end{array} \right) \left(\begin{array}{cc} 1 - p_{i+1} & p_{i+1} \\ p_{i+1} & 1 - p_{i+1} \end{array} \right) = \left(\begin{array}{cc} 1 - (q_i + p_{i+1} - 2q_ip_{i+1}) & (q_i + p_{i+1} - 2q_ip_{i+1}) \\ (q_i + p_{i+1} - 2q_ip_{i+1}) & 1 - (q_i + p_{i+1} - 2q_ip_{i+1}) \end{array} \right),
\]
which means that \(q_{i+1} = q_i + p_{i+1} - 2q_ip_{i+1} \). The reader may notice similarities with the work we did for distribution of digits. Indeed, it is the same algebra, but we need the new language and we will take it a bit farther.

This last relation for \(q_i \) gives us a sense of what is happening: we hope that each successive \(p_{i+1} \) tugs \(q_i \) towards \(1/2 \), and now we can check it and compute by how much.
\[
\frac{1/2 - q_{i+1}}{1/2 - q_i} = \frac{1/2 - (q_i + p_{i+1} - 2q_ip_{i+1})}{1/2 - q_i} = 1 - 2p_{i+1}.
\]
Since \(p_k \in [0, 1] \) for all \(k \in \mathbb{N}^+ \), the “shrinking factor” for the distance from \(q_i \) to \(1/2 \) is
\[
|1 - 2p_{i+1}| \leq 1.
\]
Moreover,
\[
1/2 - q_i \to 0 \text{ if } \prod_{k=1}^{i} |1 - 2p_k| \to 0.
\]
Notice that the sign under the absolute value is somewhat irrelevant. What makes a sequence blurring is how close it remains to \(1/2 \). In particular,
Fact 3.3.3. If the sequence \(p_1, p_2, p_3, \ldots \) is a blurring sequence, and a sequence \(r_i \) has the property that \(|1/2 - r_i| \leq |1/2 - p_i| \), then \(r_i \) is a blurring sequence. One can think of \(r_i \) as “bounded in the neighborhood of \(1/2 \)” by \(p_i \). An easy consequence is that any sequence \(r_1, r_2, r_3, \ldots \) where \(r_i = p_i \) or \(1 - p_i \) is a blurring sequence. All of this is immediate from (15).

We are now ready to treat that very particular and useful to us sequence.

Claim 3.3.4. Let \(\rho_i \) be the \(i \)-th prime, \(i \in \mathbb{N}^+ \) and let \(k \) be a positive integer. Then the sequence \(p_i = k - 1 - \rho_i^{-1} \) is a blurring sequence.

Proof. In view of (15), it suffices to show that

\[
\prod_{i=1}^{\infty} \left(1 - 2k^{-1}\rho_i^{-1} \right) = 0,
\]

or, equivalently, that

\[
\prod_{i=1}^{\infty} \frac{1}{1 - 2k^{-1}\rho_i^{-1}} \leq \prod_{i=1}^{\infty} \frac{1}{1 - k^{-1}\rho_i^{-1}} = \infty.
\]

In the spirit of (9), we can write

\[
\prod_{i=1}^{\infty} \frac{1}{1 - k^{-1}\rho_i^{-1}} = \left(1 + \frac{1}{2k} + \frac{1}{2^2k^2} + \cdots \right) \left(1 + \frac{1}{3k} + \frac{1}{3^2k^2} + \cdots \right) \cdots
\]

\[
= 1 + \frac{1}{k} \left(\frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \cdots + \frac{1}{\rho_i} + \cdots \right) + \cdots
\]

\[
= \infty,
\]

since the series \(\sum_{i=1}^{\infty} \frac{1}{\rho_i} \) diverges ([17 17]). For a classical treatment see ([1] 349-351). \(\square \)

With the claim secured, we are ready to introduce the main result in this section.

Theorem 3.4. Let \(L_i \) be an arbitrary sequence of pad lines, \(i \in \mathbb{N} \), period of \(L_i \) is \(\rho_i \), the \(i \)-th prime. Let \(n \) be an arbitrary positive integer. Then the distribution of strings of length \(n \) in the period of the pad on the first \(i \) lines approaches uniform distribution as \(i \to \infty \).

Proof. To outline the proof, we will represent the probability space associated with the pad product by that of a certain random walk among the vertices of the \(n \)-dimensional cube. We will then project this walk onto many different partitions of the cube to obtain induced random walks on \(\{0, 1\} \). All these walks will be blurring, and so we will gather all of their resulting relations and make a conclusion about the overall distribution.

Look at a binary string of length \(n \) as a vertex of the \(n \)-dimensional cube. Our random walk will start at the origin, time will start at zero. If our coordinates are \(x_{i-1} \) at time \(i-1 \), then we choose fairly one of the \(\rho_i \) substrings of length \(n \) out of \(L_i \), call it \(d_i \), and go to the vertex \(x_i = x_{i-1} \oplus d_i \). For any fixed \(i \) and a walk up to time \(i \), the resulting probability space is identical to that of the pad on the first \(i \) lines. Let \(W_i \) be the position in the cube at time \(i \); this is the walk we will be projecting.

Now we will show how to divide the cube into two parts, in \(2^n - 1 \) different ways. Actually, look at the figure [3.3.1] first, it shows the partitions for \(n = 3 \). (For the sake of notational clarity, we will continue to abuse the case when \(n = 3 \) until the end of this proof, but everything we say will extend naturally to the general case.)
Figure 1. Partitions of the 3-dimensional cube.

Partitions in the first row of the figure are obtained by fixing the parity of a single coordinate; the ones in the second row by fixing the sum \((\text{mod} 2)\) of two coordinates (e.g. setting the sum of the first two coordinates to zero yields half of the cube: 000, 001, 110, 111); the one in the last row by fixing the parity of the sum of all three coordinates. The quantities in each row are clearly binomial coefficients, which is why we have exactly \(2^n - 1\) partitions.

Next, we project our random walk onto each one of these partitions. Let \(T_i, i \in \mathbb{N}\), be one of these projections. The range of \(T_i\) can be thought of as \([0, 1]\), where 0 corresponds to the “even” half of the cube, and 1 corresponds to the “odd” half. We claim that \(T_i\) is a blurring process. To make sure, let us fix \(i\) and inspect the probability \(p_i\) of \(T_i\) going to a different half of the cube. We will show that for all \(i \geq 2^n - 1\), this probability \(p_i\) is at least \(\rho_i^{-1}\) and at most \(1 - \rho_i^{-1}\), and then \(T_i\) will be blurring by Claim (3.3.4). Certainly, \(T_i\) can send us to at least two and at most \(\rho_i\) different places, so we only need to show that not all of those places are in the same half of the cube. The instructions for where to go are given in a string of length \(n\), which is a substring of \(L_i\) (it is OK to wrap around), write it as \((\delta_1, \delta_2, \ldots, \delta_n)\). Our partition, on the other hand, is determined by the parity of certain coordinates, so let us represent it as a vector \((l_1, l_2, \ldots, l_n)\), where \(l_\xi = 1\) iff \(\xi\) is one of the coordinates that matter. Then

\[
z = l_1 \delta_1 + l_2 \delta_2 + \ldots + l_n \delta_n \quad (\text{mod} \ 2)
\]

tells us exactly what we want: \(z = 1\) iff \(\delta\) sends us to a different half of our partition. For contradiction, suppose that \(z\) is constant when computed for each of the \(\rho_i\)
substrings of L_i. Let δ_0 now be a digit of L_i, so that we can write
\begin{equation}
 l_1 \delta_k + l_2 \delta_{k+1} + \ldots + l_n \delta_{k+n-1} = l_1 \delta_{k+1} + l_2 \delta_{k+2} + \ldots + l_n \delta_{k+n} \mod 2,
\end{equation}
where k is any natural number. Without loss of generality, $l_n = 1$, so what we have here is a linear recurrence relation for δ_{k+n} with period ρ_i. But the largest period this linear recurrence relation can have is $2^{n-1} - 1$, so we have a contradiction and have to conclude that δ cannot be the same on the entire line, and hence T_i is a blurring process.

For the last leg of this proof, let $x_1^i, x_2^i, \ldots, x_i^i$ be the probabilities for being in a certain vertex of the cube after a random walk over the vertices of the cube at time i, i.e. values from the pmf of W_i. For each of the $2^n - 1$ ways to partition the cube we can write a statement saying that a corresponding projection is blurring. In case when $n = 3$, we get
\begin{align*}
x_1^i + x_2^i + x_3^i + x_4^i - x_5^i - x_6^i - x_7^i - x_8^i & \to 0, \\
x_1^i + x_2^i - x_3^i - x_4^i + x_5^i + x_6^i - x_7^i - x_8^i & \to 0, \\
\vdots \\
x_1^i - x_2^i + x_3^i - x_4^i + x_5^i - x_6^i + x_7^i - x_8^i & \to 0,
\end{align*}
where the arrow is for $i \to \infty$. And we get this one for free:
\begin{align*}
x_1^i + x_2^i + x_3^i + x_4^i + x_5^i + x_6^i + x_7^i + x_8^i = 1.
\end{align*}
The vector x^i is bounded, so it has a limit point x, which must be the unique (!) solution to the system of equations, as above, with equalities instead of arrows. As an illustration ($n = 3$), sum up everything to get
\begin{align*}
2^n x_1 = 1.
\end{align*}
Other components are obtained similarly, and it works just as well for any $n \in \mathbb{N}^+$. We have shown that the pmf of W_i tends to be uniform as $i \to \infty$, and so does the corresponding distribution of strings of length n in the pad product on first i lines. □

Note 3.4.1. In his 1965 paper ([3]), Robert C. Tausworthe describes a pseudo-random number generator (a_i), a $(0, 1)$ sequence generated by an n-th degree maximal-length linear recurrence relation modulo two. The period in his case was $2^n - 1$, just as for (16) in the proof above.

4. Further Directions

There are two major directions of further inquiry we can mention.

One is the exploration of the Prime Crawler's cryptographic fitness. On the face of it, the PC is ill-suited for cryptographic purposes [4]. In particular, if the internal state (the pad) of the PC is exposed, then an attacker can run the generator both forward and backward with perfect ease. But questions still remain with respect to the PC's passing of the next-bit test [5]. Here, an attacker's goal is to predict the future outputs based on the previous ones. So fix a pad with n lines of lengths $p_0, p_1, \ldots, p_{n-1}$ respectively. A naive attacker can reconstruct the state by observing $k = p_0 + p_1 + \ldots + p_{n-1}$ consecutive outputs, call them $r_0, r_1, \ldots, r_{k-1}$. The lines can then be reconstructed by solving a
system of \(k \) linear equations:
\[
\begin{align*}
L_0(0) + L_1(0) + \ldots + L_{n-1}(0) &= r_0 \\
L_0(1) + L_1(1) + \ldots + L_{n-1}(1) &= r_1 \\
&\vdots \\
L_0(k − 1(\mod p_0)) + L_1(k − 1(\mod p_1)) + \ldots + L_{n-1}(k − 1(\mod p_{n-1})) &= r_{k-1}
\end{align*}
\]

Solving systems of linear equations can be done in polynomial (sub-cubic) time, but in our case of Boolean variables, more specialized algorithms exist [2].

Another, sexier, but quite possibly hopeless direction to explore is the relationship between the Prime Crawler and the function \(\omega(n)(\mod 2) \), where \(\omega(n) \) is the number of distinct prime factors of \(n \). A “sparse” pad with consecutive primes for line lengths, and with a single 1 in the end of each line, will faithfully generate the initial segment of \(\omega(n)(\mod 2) \), and an infinite pad will generate the entire sequence, so a finite pad may be though of as printing a “periodic approximation” of \(\omega(n)(\mod 2) \). As the pad grows larger, the distribution of substrings becomes more fair, so there may be a way here to show that \(\omega(n)(\mod 2) \) is a normal number in base 2 [6].

5. Acknowledgments

Thanks to Peter Barendse for a stimulating discussion related to the Euler Product [8], and to my former office mate Myoungil Kim for the slick algebraic tricks [9].

6. Copying

Copyright 2009, 2014 Ivan Zaigralin. This document is licensed under Attribution 4.0 International license, full text at http://creativecommons.org/licenses/by/4.0/ In short, you are free to share (copy and redistribute the material in any medium or format) and adapt (remix, transform, and build upon the material for any purpose, even commercially) this work, as long as you abide by the terms of the license.

References